By Topic

Real time plasma etch process modeling by neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

We address the problem of control relevant process modeling from production data for the N-well reactive ion etching processed by LAM Rainbow Etchers. Due to physical constraints we consider building an empirical neural network model using one lot of data which usually contains 24 wafers. Using the existence result of feedforward networks as universal approximators, we experimentally developed different network structures as models of the etching process under investigation. Our results are built upon extensive simulations on different lots of the process. The same modeling idea is also extended to use the network model to predict the end point detection signal prior for the processing of one wafer

Published in:

Emerging Technologies and Factory Automation Proceedings, 1997. ETFA '97., 1997 6th International Conference on

Date of Conference:

9-12 Sep 1997