By Topic

Three-level Neutral Point Clamped Inverter Interface for flow battery/supercapacitor Energy Storage System used for microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vechiu, I. ; ESTIA-Rech. Lab., Bidart, France ; Etxeberria, A. ; Camblong, H. ; Vinassa, J.-M.

Microgrids can potentially improve security, quality, reliability and availability of electricity supply for many applications. In order to achieve these benefits when a microgrid with a substantial amount of stochastic generation operates in grid connected mode but also during islanding mode, the use of storage systems is essential. The main goal of the storage is to perform power balance during islanding mode and to avoid the effect of the renewable energy sources intermittency and load fluctuations to the grid. However, none of the currently available Energy Storage Systems (ESS) has the necessary high power and energy densities to face the effect of different disturbances coming from the load or renewable energy sources. Thus, the association of more than one storage technology in a Hybrid Energy Storage System (HESS) can be used to satisfy the above mentioned requirements. Generally, separate DC/DC converters are required to interconnect the different ESS with an inverter in order to supply the distributed system in a microgrid. The present work proposes the association of a Vanadium-Redox flow battery (VRB) with supercapacitors and a Three-level Neutral Point Clamped Inverter Interface for energy management in a microgrid. The power converter control and the energy management are also detailed. Simulation results are presented to prove the feasibility of the proposed system.

Published in:

Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and Exhibition on

Date of Conference:

5-7 Dec. 2011