By Topic

Asymptotic Cramér-Rao Bound for Noise-Compensated Autoregressive Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weruaga, L. ; Khalifa Univ. of Sci., Technol. & Res., Sharjah, United Arab Emirates ; Melko, O.M.

Noise-compensated autoregressive (AR) analysis is a problem insufficiently explored with regard to the accuracy of the estimate. This paper studies comprehensively the lower limit of the estimation variance, presenting the asymptotic Cramér-Rao bound (CRB) for Gaussian processes and additive Gaussian noise. This novel result is obtained by using a frequency-domain perspective of the problem as well as an unusual parametrization of an AR model. The Wiener filter rule appears as the distinctive building element in the Fisher information matrix. The theoretical analysis is validated numerically, showing that the proposed CRB is attained by competitive ad hoc estimation methods under a variety of Gaussian color noise and realistic scenarios.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 9 )