By Topic

Synthesis of low-complexity stabilizing piecewise affine controllers: A control-Lyapunov function approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Lu ; State Key Lab. of Synthetical Autom. for Process Ind., Northeastern Univ., Shenyang, China ; Heemels, W.P.M.H. ; Bemporad, A.

Explicit model predictive controllers computed exactly by multi-parametric optimization techniques often lead to piecewise affine (PWA) state feedback controllers with highly complex and irregular partitionings of the feasible set. In many cases complexity prohibits the implementation of the resulting MPC control law for fast or large-scale system. This paper presents a new approach to synthesize low-complexity PWA controllers on regular partitionings that enhance fast on-line implementation with low memory requirements. Based on a PWA control-Lyapunov function, which can be obtained as the optimal cost for a constrained linear system corresponding to a stabilizing MPC setup, the synthesis procedure for the low-complexity control law boils down to local linear programming (LP) feasibility problems, which guarantee stability, constraint satisfaction, and certain performance requirements. Initially, the PWA controllers are computed on a fixed regular partitioning. However, we also present an automatic refinement procedure to refine the partitioning where necessary in order to satisfy the design specifications. A numerical example show the effectiveness of the novel approach.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011