By Topic

Robust vehicle lateral stabilization via set-based methods for uncertain piecewise affine systems: Experimental results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Palmieri, G. ; Eng. Dept., Univ. degli Studi del Sannio, Benevento, Italy ; Baric, M. ; Glielmo, L. ; Tseng, E.H.
more authors

The paper presents the design of a lateral stability controller for ground vehicles based on front steering and four wheels independent braking. The control objective is to track yaw rate and lateral velocity reference signals while avoiding front and rear wheel traction force saturation. Control design is based on an approximate piecewise-affine nonlinear dynamical model of the vehicle. Vehicle longitudinal velocity and driver steering input are modeled as measured disturbances taking values in a compact set. We use a time-optimal control strategy which ensures convergence into a maximal robust control invariant set. This paper presents the controller experimental results on a vehicle equipped with active front steering and differential braking. In particular, tests at high-speed on ice with aggressive driver maneuvers show the effectiveness of the proposed scheme.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011