By Topic

Integration of large-scale metabolic, signaling, and gene regulatory networks with application to infection responses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Richard, G. ; Boston Univ., Boston, MA, USA ; Hyeygjeon Chang ; Cizelj, I. ; Belta, C.
more authors

Mathematical models of biochemical networks, such as metabolic, signaling, and gene networks, have been studied extensively and have been shown to provide accurate descriptions of various cell processes. Nevertheless, their usage is restricted by the fact that they are usually studied in isolation, without feedback from the environment in which they evolve. Integrating these models in a global framework is a promising direction in order to increase both their accuracy and predictive capacity. In this paper, we describe the integration of large-scale metabolic and signaling networks with a regulatory gene network. We focus on the response to infection in mouse macrophage cells. Our computational framework allows to virtually simulate any type of infection and to follow its effect on the cell. The model comprises 3,507 chemical species involved in 4,630 reactions evolving at the fast time scale of metabolic and signaling processes. These interact with 20 genes evolving at the slow time scale of gene expression and regulation. We develop a simulator for this model and use it to study infections with Porphyromonas gingivalis.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011