By Topic

A distributed fault detection methodology for a class of large-scale uncertain input-output discrete-time nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boem, Francesca ; Department of Industrial and Information Engineering, DI3, University of Trieste, Italy ; Ferrari, Riccardo M.G. ; Parisini, T. ; Polycarpou, M.M.

This paper extends very recent results on a distributed fault diagnosis methodology for nonlinear uncertain large-scale discrete-time dynamical systems to the case of partial state measurement. The large scale system being monitored is modeled, following a divide et impera approach, as the interconnection of several subsystems that are allowed to overlap sharing some state components. Each subsystem has its own Local Fault Diagnoser: the local detection is based on the knowledge of the local subsystem dynamic model and of an adaptive approximation of the interconnection with neighboring subsystems. A consensus-based estimator is used in order to improve the detectability of faults affecting variables shared among different subsystems. Time-varying threshold functions guaranteeing no false-positive alarms and analytical fault detectability sufficient conditions are presented as well.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011