By Topic

Robust Pointwise Min-Norm Control of distributed systems with fluid flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Igreja, J.M. ; ISEL, Lisbon, Portugal ; Lemos, J.M. ; Costa, S.J.

This paper reports a Pointwise Min-Norm control (PWMN) general result for a class of distributed systems that include transport phenomena associated with fluid flow in pipes and open pool canals. The main goal is to find a numerical control scheme that ultimately can be embedded in a more general Nonlinear Model Predictive Control formulation as an alternative to ensure closed-loop stability, for moderate values of the receding horizon without increasing dramatically the computational effort. In fact the PWMN control can be viewed as the NMPC limit stabilizing solution when the predictive horizon value goes to zero. A tubular system with finite escape traveling time is used to illustrate the control performance. An application to a canal pool modeled by Saint-Venant's equations is also given. Canals are formed by a sequence of pools separated by gates. Water distribution canals provide interesting examples of distributed parameter plants for nonlinear control application.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011