By Topic

Fault detection and diagnosis for general discrete-time stochastic systems using output probability density estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Skaf, Z. ; Control Syst. Center, Univ. of Manchester, Manchester, UK ; AI-Bayati, A. ; Hong Wang

A new approach of fault detection and diagnosis (FDD) for general stochastic systems in discrete-time is studied. Our work on this problem is motivated by the fact that most of the nonlinear control laws are implemented as digital controllers in reality. Different from the formulation of classical FDD problem, it is supposed that the measured information for the FDD is the probability density functions (PDFs) of the system output rather than its measured value. A radial basis function (RBF) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighting of the RBFs neural network. Feasible criteria to detect and diagnose the system fault are provided by using linear matrix inequality (LMI) techniques. An illustrated example is included to demonstrate the efficiency of the proposed algorithm, and satisfactory results are obtained.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011