Cart (Loading....) | Create Account
Close category search window
 

Individualized PID control of depth of anesthesia based on patient model identification during the induction phase of anesthesia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soltesz, K. ; Dept. of Autom. Control, Lund Univ., Lund, Sweden ; Jin-Oh Hahn ; Dumont, G.A. ; Ansermino, J.M.

This paper proposes a closed-loop propofol admission strategy for depth of hypnosis control in anesthesia. A population-based, robustly tuned controller brings the patient to a desired level of hypnosis. The novelty lies in individualizing the controller once a stable level of hypnosis is reached. This is based on the identified patient parameters and enhances suppression of output disturbances, representing surgical stimuli. The system was evaluated in simulation on models of 44 patients obtained from clinical trials. A large amount of improvement (20 - 30%) in load suppression performance is obtained by the proposed individualized control.

Published in:

Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on

Date of Conference:

12-15 Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.