By Topic

Control of nonlinear bilateral teleoperation systems subject to disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alireza Mohammadi ; Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, ON M5S 3G4 Canada ; Mahdi Tavakoli ; Horacio J. Marquez

Teleoperation systems, consisting of a pair of master and slave robots are subject to different types of disturbances such as joint frictions, varying contact points, unmodeled dynamics and unknown payloads. Such disturbances, when unaccounted for, cause poor teleoperation transparency and even instability. This paper presents a novel nonlinear bilateral control scheme, based on the concept of disturbance observer based control, to counter these disturbances and their negative effects on the teleoperation systems. The proposed disturbance observer based bilateral control law is able to achieve global asymptotic force tracking, and global exponential position and disturbance tracking in the presence of various disturbances. The minimum exponential convergence rate of the position and the disturbance tracking errors can be tuned by the controller parameters. Simulations are presented to show the effectiveness of the proposed control scheme.

Published in:

2011 50th IEEE Conference on Decision and Control and European Control Conference

Date of Conference:

12-15 Dec. 2011