By Topic

The application of feature selection methods to analyze the tissue microarray data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weipeng Lin ; Software Sch., Xiamen Univ., Xiamen, China ; Kunhong Liu ; Guoyan Liu

In this paper, two feature selection methods, binary genetic algorithm (GA) and sequential floating forward selection (SFFS), were deployed to analyze tissue microarray dataset. The tissue microarray materials in our experiments consisted of 15 tumor-related genes in histological normal tissues adjacent to clinic tumors and different tumors, and the data were arranged in three different datasets and all the collection works were done by the Affiliated Zhongshan Hospital of Xiamen University. For each dataset, we used three distinguished classifiers to obtain the AUC of receive operating characteristic (ROC) curve. The experimental results showed that both feature selection methods could lead to reliable and accuracy results, and be used to discover the connection of genes and cancers.

Published in:

Advanced Computational Intelligence (IWACI), 2011 Fourth International Workshop on

Date of Conference:

19-21 Oct. 2011