By Topic

An algorithm of object-based image retrieval using multiple instance learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao Wen ; School of Information Science and Technology, Northwest University, Xi'an, 710069, China ; Guohua Geng ; Xinyi Zhu

For the problem of object-based image retrieval, in this paper a novel semi-supervised multiple instance learning algorithm is presented. In the framework of multiple instance learning, this algorithm regards the whole image as a bag, and low-level visual feature of the segmented regions as instances. Firstly, the algorithm clusters the instances in two sets, one of which is composed of instances in positive bags and the other is composed of instances in negative bags, so as to find potential positive instances and feature data of bag structure. Then their respective similarities are measured by radial basis function, and an alpha coefficient is introduced in bag similarity measure as the trade-off between the two similarities. Experiments on SIVAL dataset show that this algorithm is feasible and the performance is superior to other algorithms.

Published in:

Advanced Computational Intelligence (IWACI), 2011 Fourth International Workshop on

Date of Conference:

19-21 Oct. 2011