By Topic

Improved quantum-inspired immune clonal clustering algorithm applied to SAR image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Y. Li ; Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an 710071, China ; N. N. Wu ; R. C. Liu

The goal of segmentation is to partition an image into disjoint regions. In this paper, the segmentation problem based on partition clustering is viewed as a combinatorial optimization problem. The original image is partitioned into small blocks by watershed algorithm, and the quantum-inspired immune clonal algorithm is used to search the optimal clustering centre, and make the sequence of maximum affinity function as clustering result, and finally obtain the segmentation result. Experimental results show that the proposed method is effective for SAR image segmentation.

Published in:

Proceedings of 2011 IEEE CIE International Conference on Radar  (Volume:2 )

Date of Conference:

24-27 Oct. 2011