By Topic

An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Zhang ; School of Electronic Information Engineering, Tianjin University, Tianjin, China ; Zhe Jiang ; Zhiyu Gao ; Yanyan Liu

A high-speed and reduced-area 2-D discrete wavelet transform (2-D DWT) architecture is proposed. Previous DWT architectures are mostly based on the modified lifting scheme or the flipping structure. In order to achieve a critical path with only one multiplier, at least four pipelining stages are required for one lifting step, or a large temporal buffer is needed. In this brief, modifications are made to the lifting scheme, and the intermediate results are recombined and stored to reduce the number of pipelining stages. As a result, the number of registers can be reduced to 18 without extending the critical path. In addition, the two-input/two-output parallel scanning architecture is adopted in our design. For a 2-D DWT with the size of , the proposed architecture only requires three registers between the row and column filters as the transposing buffer, and a higher efficiency can be achieved.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:59 ,  Issue: 3 )