Cart (Loading....) | Create Account
Close category search window
 

A modified algorithm for clustering based on particle swarm optimization and K-means

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Padma, M.P. ; Dept. of CompScience & Eng., Bannari Amman Inst. Of Technol., Sathyamangalam, India ; Komorasamy, G.

Clustering is a technique that can divide data objects into meaningful groups. Particle swarm optimization is an evolutionary computation technique developed through a simulation of simplified social models. K-means is one of the popular unsupervised learning clustering algorithms. After analyzing particle swarm optimization and K-means algorithm, a new hybrid algorithm based on both algorithms is proposed. In the new algorithm, the next solution of the Problem is generated by the better one of PSO and K-means but not PSO itself. It can make full use of the advantages of both algorithms, and can avoid shortcomings of both algorithms. The experimental results show the effectiveness of the new algorithm. First reduces the dataset's dimensionality using the Singular Value Decomposition (SVD) method, and only then employs various clustering techniques. Besides its simplicity, and its ability to perform well on high dimensional data, it provides visualization tools for evaluating the results. It was tested on a variety of datasets, from classical benchmarks to large-scale gene-expression experiments. It is configurable and expendable to newly added algorithms.

Published in:

Computer Communication and Informatics (ICCCI), 2012 International Conference on

Date of Conference:

10-12 Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.