By Topic

Low-overhead fault-tolerance technique for a dynamically reconfigurable softcore processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Manh Pham ; University of Rennes 1/IRISA/INRIA, Lannion ; Sébastien Pillement ; Stanisław J. Piestrak

In this paper, we propose a new approach to implement a reliable softcore processor on SRAM-based FPGAs, which can mitigate radiation-induced temporary faults (single-event upsets (SEUs)) at moderate cost. A new Enhanced Lockstep scheme built using a pair of MicroBlaze cores is proposed and implemented on Xilinx Virtex-5 FPGA. Unlike the basic lockstep scheme, ours allows to detect and eliminate its internal temporary configuration upsets without interrupting normal functioning. Faults are detected and eliminated using a Configuration Engine built on the basis of the PicoBlaze core which, to avoid a single point of failure, is implemented as fault-tolerant using triple modular redundancy (TMR). A softcore processor can recover from configuration upsets through partial reconfiguration combined with roll-forward recovery. SEUs affecting logic which are significantly less likely than those affecting configuration are handled by checkpointing and rollback. Finally, to handle permanent faults, the tiling technique is also proposed. The new Enhanced Lockstep scheme requires significantly shorter error recovery time compared to conventional lockstep scheme and uses significantly smaller number of slices compared to known TMR-based design (although at the cost of longer error recovery time). The efficiency of the proposed approach was validated through fault injection experiments.

Published in:

IEEE Transactions on Computers  (Volume:62 ,  Issue: 6 )