By Topic

Subspace Methods for Joint Sparse Recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiryung Lee ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Bresler, Y. ; Junge, M.

We propose robust and efficient algorithms for the joint sparse recovery problem in compressed sensing, which simultaneously recover the supports of jointly sparse signals from their multiple measurement vectors obtained through a common sensing matrix. In a favorable situation, the unknown matrix, which consists of the jointly sparse signals, has linearly independent nonzero rows. In this case, the MUltiple SIgnal Classification (MUSIC) algorithm, originally proposed by Schmidt for the direction of arrival estimation problem in sensor array processing and later proposed and analyzed for joint sparse recovery by Feng and Bresler, provides a guarantee with the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank defect or ill-conditioning. This situation arises with a limited number of measurement vectors, or with highly correlated signal components. In this case, MUSIC fails and, in practice, none of the existing methods can consistently approach the fundamental limit. We propose subspace-augmented MUSIC (SA-MUSIC), which improves on MUSIC such that the support is reliably recovered under such unfavorable conditions. Combined with a subspace-based greedy algorithm, known as Orthogonal Subspace Matching Pursuit, which is also proposed and analyzed in this paper, SA-MUSIC provides a computationally efficient algorithm with a performance guarantee. The performance guarantees are given in terms of a version of the restricted isometry property. In particular, we also present a non-asymptotic perturbation analysis of the signal subspace estimation step, which has been missing in the previous studies of MUSIC.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 6 )