Cart (Loading....) | Create Account
Close category search window
 

Six-input lookup table circuit with 62% fewer transistors using nonvolatile logic-in-memory architecture with series/parallel-connected magnetic tunnel junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3672411 

A compact 6-input lookup table (LUT) circuit using nonvolatile logic-in-memory (LIM) architecture with series/parallel-connected magnetic tunnel junction (MTJ) devices is proposed for a standby-power-free field-programmable gate array. Series/parallel connections of MTJ devices make it possible not only to reduce the effect of resistance variation, but also to enhance the programmability of resistance values, which achieves a sufficient sensing margin even when process variation is serious in the recent nanometer-scaled VLSI. Moreover, the additional MTJ devices do not increase the effective chip area because the configuration circuit using MTJ devices is simplified and these devices are stacked over the CMOS plane. As a result, the transistor counts of the proposed circuit are reduced by 62% in comparison with those of a conventional nonvolatile LUT circuit where CMOS-only-based volatile static random access memory cell circuits are replaced by MTJ-based nonvolatile ones.

Published in:

Journal of Applied Physics  (Volume:111 ,  Issue: 7 )

Date of Publication:

Apr 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.