Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A hierarchical context dissemination framework for managing federated clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Famaey, J. ; Dept. of Inf. Technol., Ghent Univ., Ghent, Belgium ; Latre, S. ; Strassner, J. ; De Turck, F.

The growing popularity of the Internet has caused the size and complexity of communications and computing systems to greatly increase in recent years. To alleviate this increased management complexity, novel autonomic management architectures have emerged, in which many automated components manage the network's resources in a distributed fashion. However, in order to achieve effective collaboration between these management components, they need to be able to efficiently exchange information in a timely fashion. In this article, we propose a context dissemination framework that addresses this problem. To achieve scalability, the management components are structured in a hierarchy. The framework facilitates the aggregation and translation of information as it is propagated through the hierarchy. Additionally, by way of semantics, context is filtered based on meaning and is disseminated intelligently according to dynamically changing context requirements. This significantly reduces the exchange of superfluous context and thus further increases scalability. The large size of modern federated cloud computing infrastructures, makes the presented context dissemination framework ideally suited to improve their management efficiency and scalability. The specific context requirements for the management of a cloud data center are identified, and our context dissemination approach is applied to it. Additionally, an extensive evaluation of the framework in a large-scale cloud data center scenario was performed in order to characterize the benefits of our approach, in terms of scalability and reasoning time.

Published in:

Communications and Networks, Journal of  (Volume:13 ,  Issue: 6 )