By Topic

Automatic detection of anomalies in blood glucose using a machine learning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ying Zhu ; Faculty of Business and Information Technology, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, Canada

Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data. We study the problem of automatically detecting anomalies in the measured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.

Published in:

Journal of Communications and Networks  (Volume:13 ,  Issue: 2 )