By Topic

Efficient Soft-Input Soft-Output Tree Detection via an Improved Path Metric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Won Choi ; Qualcomm Inc., San Diego, USA ; Byonghyo Shim ; Andrew C. Singer

Tree detection techniques are often used to reduce the complexity of a posteriori probability (APP) detection in multiantenna wireless communication systems. In this paper, we introduce an efficient soft-input soft-output tree detection algorithm that employs a new type of look-ahead path metric in the process of branch pruning (or sorting). While conventional path metrics depend only on symbols on a visited path, the new path metric accounts for unvisited parts of the tree in advance through an unconstrained linear estimator and adds a bias term that reflects the contribution of as-yet undecided symbols. By applying the linear estimate-based look-ahead path metric to an -algorithm that selects the best paths for each level of the tree, we develop a new soft-input soft-output tree detector, called an improved soft-input soft-output -algorithm (ISS-MA). Based on an analysis of the probability of correct path loss, we show that the improved path metric offers substantial performance gain over the conventional path metric. We also demonstrate through simulations that the proposed ISS-MA can be a promising candidate for soft-input soft-output detection in high-dimensional systems.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 3 )