Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A blind deconvolution approach to ultrasound imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chengpu Yu ; Biomed. Electron. Lab., Nangyang Technol. Univ., Singapore, Singapore ; Cishen Zhang ; Lihua Xie

In this paper, a single-input multiple-output (SIMO) channel model is introduced for the deconvolution process of ultrasound imaging; the ultrasound pulse is the single system input and tissue reflectivity functions are the channel impulse responses. A sparse regularized blind deconvolution model is developed by projecting the tissue reflectivity functions onto the null space of a cross-relation matrix and projecting the ultrasound pulse onto a low-resolution space. In this way, the computational load is greatly reduced and the estimation accuracy can be improved because the proposed deconvolution model contains fewer variables. Subsequently, an alternating direction method of multipliers (ADMM) algorithm is introduced to efficiently solve the proposed blind de convolution problem. Finally, the performance of the proposed blind deconvolution method is examined using both computer simulated data and practical in vitro and in vivo data. The results show a great improvement in the quality of ultrasound images in terms of signal-to-noise ratio and spatial resolution gain.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 2 )