By Topic

Optimal Flexible Operation of a CO _{2} Capture Power Plant in a Combined Energy and Carbon Emission Market

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qixin Chen ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Chongqing Kang ; Qing Xia ; Kirschen, D.S.

Since CO2 capture and storage (CCS) is a viable CO2 abatement option, CO2 capture power plants (CCPPs) could become a significant part of the future generation mix. This paper investigates the flexibility of the operation of a representative post-combustion CCPP with ancillary facilities. A mathematical model of the operation of such a plant is developed. This model quantifies the relation between the major operating characteristics of a CCPP, including efficiency penalty, capacity penalty, net power output, and net CO2 emission. On this basis, a profit maximization model is proposed. This model would help a CCPP decide its power output schedule, CO2 capture schedule, and bidding strategies in response of volatile power and carbon prices in a day-ahead energy market and a cap-and-trade carbon emission market. The validity and the usefulness of the proposed model are demonstrated using numerical results.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 3 )