By Topic

Tangent Hyperplane Kernel Principal Component Analysis for Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joon-Ku Im ; Dept. of Ind. Eng. & Manage. Sci., Northwestern Univ., Evanston, IL, USA ; Apley, D.W. ; Runger, G.C.

Kernel principal component analysis (KPCA) is a method widely used for denoising multivariate data. Using geometric arguments, we investigate why a projection operation inherent to all existing KPCA denoising algorithms can sometimes cause very poor denoising. Based on this, we propose a modification to the projection operation that remedies this problem and can be incorporated into any of the existing KPCA algorithms. Using toy examples and real datasets, we show that the proposed algorithm can substantially improve denoising performance and is more robust to misspecification of an important tuning parameter.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )