By Topic

A Multiplicative Iterative Algorithm for Box-Constrained Penalized Likelihood Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, R.H. ; Dept. of Math., Chinese Univ. of Hong Kong, Hong Kong, China ; Jun Ma

Image restoration is a computationally intensive problem as a large number of pixel values have to be determined. Since the pixel values of digital images can attain only a finite number of values (e.g., 8-bit images can have only 256 gray levels), one would like to recover an image within some dynamic range. This leads to the imposition of box constraints on the pixel values. The traditional gradient projection methods for constrained optimization can be used to impose box constraints, but they may suffer from either slow convergence or repeated searching for active sets in each iteration. In this paper, we develop a new box-constrained multiplicative iterative (BCMI) algorithm for box-constrained image restoration. The BCMI algorithm just requires pixelwise updates in each iteration, and there is no need to invert any matrices. We give the convergence proof of this algorithm and apply it to total variation image restoration problems, where the observed blurry images contain Poisson, Gaussian, or salt-and-pepper noises.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 7 )