By Topic

Influence of the Manufacturing Process on the Radiation Sensitivity of Fluorine-Doped Silica-Based Optical Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Alessi, A. ; Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, Saint-Etienne, France ; Girard, S. ; Marcandella, C. ; Vaccaro, L.
more authors

In this work, we analyze the origins of the observed differences between the radiation sensitivities of fluorine-doped optical fibers made with different fabrication processes. We used several experimental techniques, coupling in situ radiation-induced absorption measurements with post mortem confocal microscopy luminescence measurements. Our data showed that the silica intrinsic defects are generated both from precursor sites and from strained regular Si-O-Si linkages. Our work also provides evidence for the preponderant role of the chlorine in determining the optical losses at about 3.5 eV. The results show that the manufacturing process of these fibers strongly affects their radiation response.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 4 )