By Topic

FairTorrent: A Deficit-Based Distributed Algorithm to Ensure Fairness in Peer-to-Peer Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sherman, A. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Nieh, J. ; Stein, C.

Peer-to-peer file-sharing applications suffer from a fundamental problem of unfairness. Free-riders cause slower download times for others by contributing little or no upload bandwidth while consuming much download bandwidth. Previous attempts to address this fair bandwidth allocation problem suffer from slow peer discovery, inaccurate predictions of neighboring peers' bandwidth allocations, underutilization of bandwidth, and complex parameter tuning. We present FairTorrent, a new deficit-based distributed algorithm that accurately rewards peers in accordance with their contribution. A FairTorrent peer simply uploads the next data block to a peer to whom it owes the most data as measured by a deficit counter. FairTorrent is resilient to exploitation by free-riders and strategic peers, is simple to implement, requires no bandwidth overallocation, no prediction of peers' rates, no centralized control, and no parameter tuning. We implemented FairTorrent in a BitTorrent client without modifications to the BitTorrent protocol and evaluated its performance against other widely used BitTorrent clients. Our results show that FairTorrent provides up to two orders of magnitude better fairness, up to five times better download times for contributing peers, and 60%-100% better performance on average in live BitTorrent swarms.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 5 )