By Topic

A 10-Bit Multichannel Digitizer ASIC for Detectors in Particle Physics Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Idzik, M. ; Fac. of Phys. & Appl. Comput. Sci., AGH Univ. of Sci. & Technol., Krakow, Poland ; Swientek, K. ; Fiutowski, T. ; Kulis, S.
more authors

The design and measurement results of a multi-channel power scalable 10-bit digitizer ASIC developed for the luminosity detector at the future linear colliders (ILC/CLIC) are discussed. The 8 channel prototype with different modes of output data serialization was designed and fabricated in a 0.35 μm CMOS technology. The ASIC works for sampling rates from about 10 kS/s to 25 MS/s (50 MS/s in single channel mode) allowing linear scaling of ADCs and serializer power consumption (0.8 mW/MS/s ADC core, 1.2 mW/MS/s total per channel). A wide spectrum of static and dynamic measurements confirm very good ADC resolution (ENOB = 9.7 bits), excellent channel uniformity and negligible crosstalk. To profit from non-continuous detector operation in linear collider experiments and to save power consumption, fast periodic power pulsing is implemented.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 2 )