Cart (Loading....) | Create Account
Close category search window

Frequency Domain Min-Max Optimization of Noise-Shaping Delta-Sigma Modulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nagahara, M. ; Grad. Sch. of Inf., Kyoto Univ., Kyoto, Japan ; Yamamoto, Y.

This paper proposes a min-max design of noise-shaping delta-sigma modulators. We first characterize the all stabilizing loop-filters for a linearized modulator model. By this characterization, we formulate the design problem of lowpass, bandpass, and multi-band modulators as minimization of the maximum magnitude of the noise transfer function (NTF) in fixed frequency band(s). We show that this optimization minimizes the worst-case reconstruction error, and hence improves the SNR (signal-to-noise ratio) of the modulator. The optimization is reduced to an optimization with a linear matrix inequality (LMI) via the generalized KYP (Kalman-Yakubovich-Popov) lemma. The obtained NTF is an FIR (finite-impulse-response) filter, which is favorable in view of implementation. We also derive a stability condition for the nonlinear model of delta-sigma modulators with general quantizers including uniform ones. This condition is described as an norm condition, which is reduced to an LMI via the KYP lemma. Design examples show advantages of our design.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.