By Topic

Alloy Meets the Algebra of Programming: A Case Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oliveira, J.N. ; Dept. de Informitica, Univ. of Minho, Braga, Portugal ; Ferreira, M.A.

Relational algebra offers to software engineering the same degree of conciseness and calculational power as linear algebra in other engineering disciplines. Binary relations play the role of matrices with similar emphasis on multiplication and transposition. This matches with Alloy's lemma “everything is a relation” and with the relational basis of the Algebra of Programming (AoP). Altogether, it provides a simple and coherent approach to checking and calculating programs from abstract models. In this paper, we put Alloy and the Algebra of Programming together in a case study originating from the Verifiable File System mini-challenge put forward by Joshi and Holzmann: verifying the refinement of an abstract file store model into a journaled (Flash) data model catering to wear leveling and recovery from power loss. Our approach relies on diagrams to graphically express typed assertions. It interweaves model checking (in Alloy) with calculational proofs in a way which offers the best of both worlds. This provides ample evidence of the positive impact in software verification of Alloy's focus on relations, complemented by induction-free proofs about data structures such as stores and lists.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 3 )