Cart (Loading....) | Create Account
Close category search window
 

3D MIMO-OFDM Channel Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Auer, G. ; DOCOMO Euro-Labs., Munich, Germany

In this paper bandwidth efficient pilot design for a MIMO-OFDM downlink is addressed. By exploiting the spatial correlation of signals originating from neighboring transmit antennas, the principle of pilot aided channel estimation (PACE) by two-dimensional (2D) interpolation in time and frequency is extended to the spatial domain; giving rise to three-dimensional (3D) PACE. By invoking the multi-dimensional sampling theorem conditions for regular pilot patterns to attain minimum overhead are derived. Provided sufficient spatial correlation 3D-PACE reduces pilot overhead by 50% compared to conventional 2D-PACE. Unfortunately, spatial correlation may not be universally available: while for outdoor macro-cells, where transmit antennas are typically mounted above rooftop, the assumption of spatially correlated channels is justified, in indoor deployments where spatial correlation tends to be low, spatial interpolation may not be feasible. On the other hand, in indoor environments cell sizes together with mobile velocities are substantially smaller, giving rise to lower Doppler and channel delay spreads. We show that a sophisticated pilot design is able to retain the low pilot overhead of 3D-PACE by exploiting these heterogeneous correlation properties, in the way that high spatial correlation compensates for low correlation in time and/or frequency, and vice versa.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.