By Topic

Pulse-Duration-Dependent Mid-Infrared Laser Ablation for Biological Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mackanos, M.A. ; Dept. of Pediatrics, Stanford Univ., Stanford, CA, USA ; Simanovskii, D.M. ; Schriver, K.E. ; Hutson, M.M.
more authors

There are significant benefits to medical laser surgeries performed with mid-infrared wavelengths, including the ability to select laser parameters in order to minimize photochemical and thermal collateral damage. It has been shown that a wavelength of 6.1 μm is optimal when high ablation efficiency and minimal collateral damage is desired in biological soft tissues. Historically, free electron lasers were the only option for ablating tissue at this wavelength due to their ample pulse energy and average power. In recent years, new sources are being developed for this wavelength that can successfully ablate tissue. These alternative sources have different pulse structures and pulse durations than free electron lasers, motivating investigation of how these parameters affect the ablation process. Here, we present the pulse duration dependence for mid-IR laser ablation of biological tissues at a wavelength of 6.1 μm on a tissue phantom of cooked egg white. The crater shape, depth, and volume all changed in a significant, nonmonotonic manner as the laser pulse duration was increased from 100 ns to 5 μs.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:18 ,  Issue: 4 )