By Topic

Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3687173 

The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ∼500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials, and the large range of the length-scale—from nanometers to micrometers—of the graphene and silver particle fillers. The obtained results are important for the thermal management of advanced electronics and optoelectronics.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 7 )