Cart (Loading....) | Create Account
Close category search window

High-k GaAs metal insulator semiconductor capacitors passivated by ex-situ plasma-enhanced atomic layer deposited AlN for Fermi-level unpinning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Jussila, H. ; Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland ; Mattila, P. ; Oksanen, J. ; Perros, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This paper examines the utilization of plasma-enhanced atomic layer deposition grown AlN in the fabrication of a high-k insulator layer on GaAs. It is shown that high-k GaAs MIS capacitors with an unpinned Fermi level can be fabricated utilizing a thin ex-situ deposited AlN passivation layer. The illumination and temperature induced changes in the inversion side capacitance, and the maximum band bending of 1.2 eV indicates that the MIS capacitor reaches inversion. Removal of surface oxide is not required in contrast to many common ex-situ approaches.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 7 )

Date of Publication:

Feb 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.