By Topic

A Learning Approach Towards Detection and Tracking of Lane Markings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gopalan, R. ; Video & Multimedia Dept., AT&T LabsResearch, Middletown, NJ, USA ; Tsai Hong ; Shneier, M. ; Chellappa, R.

Road scene analysis is a challenging problem that has applications in autonomous navigation of vehicles. An integral component of this system is the robust detection and tracking of lane markings. It is a hard problem primarily due to large appearance variations in lane markings caused by factors such as occlusion (traffic on the road), shadows (from objects like trees), and changing lighting conditions of the scene (transition from day to night). In this paper, we address these issues through a learning-based approach using visual inputs from a camera mounted in front of a vehicle. We propose the following: 1) a pixel-hierarchy feature descriptor to model the contextual information shared by lane markings with the surrounding road region; 2) a robust boosting algorithm to select relevant contextual features for detecting lane markings; and 3) particle filters to track the lane markings, without knowledge of vehicle speed, by assuming the lane markings to be static through the video sequence and then learning the possible road scene variations from the statistics of tracked model parameters. We investigate the effectiveness of our algorithm on challenging daylight and night-time road video sequences.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )