By Topic

Design of Compact ESD Protection Circuit for V-Band RF Applications in a 65-nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chun-Yu Lin ; Inst. of Electron., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Li-Wei Chu ; Shiang-Yu Tsai ; Ming-Dou Ker

Nanoscale CMOS technologies have been widely used to implement radio-frequency (RF) integrated circuits. However, the thinner gate oxide and silicided drain/source in nanoscale CMOS technologies seriously degraded the electrostatic discharge (ESD) robustness of RF circuits. Against ESD damage, an on-chip ESD protection design must be included in the RF circuits. As the RF circuits operate in the higher frequency band, the parasitic effect from ESD protection circuit must be strictly limited. To provide the effective ESD protection for a 60-GHz low-noise amplifier with less RF performance degradation, two new ESD protection circuits were studied in a 65-nm CMOS process. Such compact ESD protection circuits have been successfully verified in silicon chip to achieve the 2-kV human-body-model ESD robustness with the low insertion loss in small layout area. With the better performances, the proposed ESD protection circuits were very suitable for V-band RF ESD protection.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:12 ,  Issue: 3 )