Cart (Loading....) | Create Account
Close category search window

Evolutionary Multiobjective Optimization of Kernel-Based Very-Short-Term Load Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alamaniotis, M. ; Appl. Intell. Syst. Lab., Purdue Univ., West Lafayette, IN, USA ; Ikonomopoulos, A. ; Tsoukalas, L.H.

A useful tool for the efficient management of the electric power grid is the accurate, ahead-of-time prediction-of-load demand. A novel methodology for very-short-term load forecasting is introduced in this paper, and its performance is tested on a set of historical, demand-side, 5-min data. The approach employs an ensemble of kernel-based Gaussian processes (GPs) whose predictions constitute the terms of a linear model. Adoption of a set of cost functions assessing model accuracy allows the formulation of a multiobjective optimization problem with respect to model coefficients. A genetic algorithm (GA) is used to search for a solution based on the previous step data while Pareto optimality theory provides the necessary conditions to identify an optimal one. Thus, it is the optimized linear model that yields the final prediction over the designated time interval. The proposed methodology is examined on 5-min-interval predictions for 30-min-ahead horizon. It is compared with support vector regression (SVR) and autoregressive moving average (ARMA) models as well as the independent GP forecasters on a set of six cost functions. Results clearly promote the proposed forecasting method not only over individual GPs but also over SVR and ARMA.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 3 )

Date of Publication:

Aug. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.