Cart (Loading....) | Create Account
Close category search window
 

Characterization of thallium bromide chloride crystals for radiation detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Onodera, T. ; Dept. of Electron. & Intell. Syst., Tohoku Inst. of Technol., Sendai, Japan ; Hitomi, K. ; Onodera, C. ; Shoji, T.
more authors

Thallium bromide chloride (TlBrxCl1-x) crystals have been evaluated as a material used for fabrication of room temperature radiation detectors. In this study, TlBrxCl1-x crystals with various chlorine (Cl) concentrations were grown by the travelling molten zone method and the detectors were fabricated from the crystals. The optical properties of the crystals were evaluated by measuring the transmittances. The charge transport properties were characterized by the Hecht analysis. The band gap energy of the crystals proportionally increased with Cl concentration. Mobility-lifetime products (μ(τ) of the crystals decreased with increasing Cl concentration.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.