By Topic

Multi-material decomposition using low-current X-ray and a photon-counting CZT detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sangtaek Kim ; Physics Research Laboratory, University of California, San Francisco, 94107 USA ; Andrew Hernandez ; Fares Alhassen ; Michael Pivovaroff
more authors

We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011