By Topic

An activation experiment with laser-accelerated high-energy protons to optimize the graded-z shield design for the IXO/ATHENA satellite missions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Neff, S. ; Tech. Univ. Darmstadt, Darmstadt, Germany ; Hauf, S. ; Lang, P. ; Roth, M.
more authors

The International X-ray Observatory (IXO) and ATHENA are next-generation X-ray satellites that are currently being designed as a successors of XMM-Newton. To ensure a low background for the detectors, the satellite shielding is being optimized with the Monte Carlo code Geant4. The satellite will be impacted by highly energetic protons which can activate the satellite shielding and thus cause additional background signals. Geant4 contains algorithms to simulate the activation and subsequent decay of materials, but the part of the code responsible for modeling these processes has not been thoroughly checked yet and first experiments have shown significant differences between the measurements and the corresponding simulations. To address these modeling issues, we have carried out activation experiments with laser-accelerated protons using the PHELIX high-power laser at the Gesellschaft für Schwerionenforschung in Darmstadt. In these experiments we have created a proton beam via target normal sheath acceleration. The energy spectrum of these protons is similar to typical proton spectra of solar flares and the cosmic background, both in maximum energy and their energy distribution. With the PHELIX laser, we have focused a 100 J, 1 ps pulse onto a primary target, creating protons beams with maximum energies of 17 MeV. We have used these laser-accelerated protons to activate target foils and subsequently measured the gamma spectra of these foils with high-purity germanium detectors; the proton energy spectrum has been measured with radiochromic films. We are currently working on analyzing the data and will use the results to validate physics models of activation processes and radioactive decay processes in Geant4.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011