By Topic

Deformable template recognition of multiple occluded objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mardia, K.V. ; Dept. of Stat., Leeds Univ., UK ; Wei Qian ; Shah, D. ; de Souza, K.M.A.

Based on deformable templates, the paper formulates an integrated and flexible Bayesian recognition system of multiple occluded objects. Various local dependence properties of the model are obtained to reduce the computational cost with the increase in the number of objects. Numerical results for a synthetic image and for a real image of mushrooms are discussed

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 9 )