By Topic

Robust egomotion estimation from the normal flow using search subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Silva, C. ; Comput. Vision Lab., Inst. Superior Tecnico, Lisbon, Portugal ; Santos-Victor, J.

We address the problem of egomotion estimation for a monocular observer moving under arbitrary translation and rotation, in an unknown environment. The method we propose is uniquely based on the spatio-temporal image derivatives, or the normal flow. We introduce a search paradigm which is based on geometric properties of the normal flow field, and consists in considering a family of search subspaces to estimate the egomotion parameters. Various algorithms are proposed within this framework. In order to decrease the noise sensitivity of the estimation methods, we use statistical tools, based on robust regression theory. Finally, we present and discuss a wide variety of experiments with synthetic and real images, for various kinds of camera motion

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 9 )