Cart (Loading....) | Create Account
Close category search window
 

A simple algorithm for nearest neighbor search in high dimensions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nene, S.A. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Nayar, S.K.

The problem of finding the closest point in high-dimensional spaces is common in pattern recognition. Unfortunately, the complexity of most existing search algorithms, such as k-d tree and R-tree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a user-specified distance ε. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance ε. The use of projection search combined with a novel data structure dramatically improves performance in high dimensions. A complexity analysis is presented which helps to automatically determine ε in structured problems. A comprehensive set of benchmarks clearly shows the superiority of the proposed algorithm for a variety of structured and unstructured search problems. Object recognition is demonstrated as an example application. The simplicity of the algorithm makes it possible to construct an inexpensive hardware search engine which can be 100 times faster than its software equivalent. A C++ implementation of our algorithm is available

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 9 )

Date of Publication:

Sep 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.