By Topic

Fault diameter of k-ary n-cube networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Day, K. ; Dept. of Comput. Sci., Sultan Qaboos Univ., Muscat, Oman ; Al-Ayyoub, A.E.

We obtain the fault diameter of k-ary n-cube interconnection networks (also known as n-dimensional k-torus networks). We start by constructing a complete set of node-disjoint paths (i.e., as many paths as the degree) between any two nodes of a k-ary n-cube. Each of the obtained paths is of length zero, two, or four plus the minimum length except for one path in a special case (when the Hamming distance between the two nodes is one) where the increase over the minimum length may attain eight. These results improve those obtained by B. Bose et al. (1995) where the length of some of the paths has a variable increase (which can be arbitrarily large) over the minimum length. These results are then used to derive the fault diameter of the k-ary n-cube, which is shown to be Δ+1 where Δ is the fault free diameter

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:8 ,  Issue: 9 )