By Topic

Impact of erroneous kinetic model formulation in Direct 4D image reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kotasidis, F.A. ; Sch. of Cancer & Enabling Sci., Univ. of Manchester, Manchester, UK ; Matthews, J.C. ; Angelis, G.I. ; Markiewicz, P.J.
more authors

Direct parametric image reconstruction has the potential to reduce variance in parameter estimates when applied to PET/CT data. One complication when estimating parametric maps in the body is the difficulty of finding one single model to describe all the different kinetics in the field of view (FOV). Contrary to the post-reconstruction kinetic analysis though, any errors (bias) from the discrepancy between the model and the observed kinetics in the direct 4D reconstruction can potentially propagate spatially from unimportant areas to areas of interest. In this work we investigate this effect on simulated 4-D datasets based on a digital body phantom. Different realistic cases were simulated including differential input functions in the FOV and organs with different kinetics. Micro-parameters (K1, k2,Vd, bv) where estimated using a newly proposed spatiotemporal 4D image reconstruction algorithm as well as using post-reconstruction kinetic analysis on noiseless and noisy datasets simulating [15O] H2O kinetics in the body. Bias analysis both in noiseless and noisy data showed a bias from badly modelled areas spatially propagates to other regions of interest in the direct reconstruction. Critically though under noisy conditions even with the bias propagation, the direct reconstruction method still outperforms the conventional post-reconstruction methodology. Nevertheless there is a need to ensure that appropriate models are chosen to describe the kinetics in the entire FOV with approaches such as data-driven adaptive kinetic modelling worth exploring.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011