By Topic

High performance SPECT system for simultaneous SPECT-MR imaging of small animals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Tsui, B.M.W. ; Russell H. Morgan Dept. of Radiol. & Radiol. Sci., Johns Hopkins Univ., Baltimore, MD, USA ; Jingyan Xu ; Rittenbach, A. ; Si Chen
more authors

Our goal is to develop a high performance SPECT system for simultaneous SPECT-MR imaging of small animals (SA). The SPECT system has inner diameter (ID) of 15.4 cm and outer diameter of 19.8 cm. It comprises five seamless cylindrical detectors, each with 19 CZT modules (2.54×2.54 cm2, 16×16 pixels). The SPECT system can be operated either stand-alone or as an insert into an MRI system with a minimum 20 cm bore. Cylindrical multipinhole (MPH) collimator sleeves (CSs), made with tungsten powder and solid tungsten pinhole apertures, were designed to provide maximum geometric efficiency under the system's geometric constraints. Different MPH collimators were designed for mouse or rat imaging, and for static high-resolution or dynamic imaging without CS rotation. Sparse-view image reconstruction methods reduce CS rotation. Monte Carlo simulations confirm the SPECT imaging characteristics of 2 MPH CSs that have 18 and 36 pinholes with 1 mm and 1.5 mm system resolution, respectively. Sparse-view 3D MPH image reconstruction with system response modeling indicates that 36 pinholes are sufficient to provide artifact-free images at 1.5 mm resolution without CS rotation. The SPECT system with the 2 MPH CSs, the RF coil, and all mechanical and electronics components have been constructed. Initial experimental phantom and small animal studies demonstrated the high performance and imaging characteristics of the SPECT system. In conclusion, a high performance small animal (SA) SPECT system has been designed and constructed for simultaneous SA SPECT-MRI. Initial subsystem testing has demonstrated excellent SPECT and MRI imaging performance that matches design predictions.

Published in:

Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE

Date of Conference:

23-29 Oct. 2011