By Topic

Fault Diagnosis of Discrete-Event Systems Using Continuous Petri Nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mahulea, C. ; Aragon Inst. of Eng. Res. (I3A), Univ. of Zaragoza, Zaragoza, Spain ; Seatzu, C. ; Cabasino, M.P. ; Silva, M.

When discrete-event systems are used to model systems with a large number of possible (reachable) states, many problems such as simulation, optimization, and control, may become computationally prohibitive because they require some enumeration of such states. A common way to effectively address this issue is fluidization. The goal of this paper is that of studying the effect of fluidization on fault diagnosis. In particular, we focus on the purely logic Petri net (PN) model that results in the untimed continuous PN model after fluidization. In accordance to most of the literature on discrete-event systems, we define three diagnosis states, namely N, U , and F, corresponding respectively to no fault, uncertain, and fault state. We prove that, given an observation, the resulting diagnosis state can be computed solving linear programming problems rather than integer programming problems as in the discrete case. The main advantage of fluidization is that it enables to deal with much more general PN structures. In particular, the unobservable subnet needs not be acyclic as in the discrete case. Moreover, the compact representation of the set of consistent markings using convex polytopes can be seen in some cases as an improvement in terms of computational complexity.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 4 )