By Topic

Fusion of Multiple Behaviors Using Layered Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kao-Shing Hwang ; Electr. Eng. Dept., Nat. Sun Yat-sen Univ., Kaohsiung, Taiwan ; Yu-Jen Chen ; Chun-Ju Wu

This study introduces a method to enable a robot to learn how to perform new tasks through human demonstration and independent practice. The proposed process consists of two interconnected phases; in the first phase, state-action data are obtained from human demonstrations, and an aggregated state space is learned in terms of a decision tree that groups similar states together through reinforcement learning. Without the postprocess of trimming, in tree induction, the tree encodes a control policy that can be used to control the robot by means of repeatedly improving itself. Once a variety of behaviors is learned, more elaborate behaviors can be generated by selectively organizing several behaviors using another Q-learning algorithm. The composed outputs of the organized basic behaviors on the motor level are weighted using the policy learned through Q-learning. This approach uses three diverse Q-learning algorithms to learn complex behaviors. The experimental results show that the learned complicated behaviors, organized according to individual basic behaviors by the three Q-learning algorithms on different levels, can function more adaptively in a dynamic environment.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 4 )