By Topic

Three-Leg/Four-Leg Matrix Converter Generalized Modulation Strategy—Part I: A New Formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keyhan Kobravi ; ECE department, University of Toronto, Toronto, Canada ; Reza Iravani ; Hassan A. Kojori

The generalized modulation strategy of the conventional matrix converter (MC), i.e., three-leg MC, was previously developed using the duty-cycle space vector (DCSV) representation of switch duty cycles. This paper uses the DCSV representation of switch duty cycles to develop a new formulation of the generalized modulation strategy for one-, three-, and four-leg MCs. The four-leg MC, unlike the three-leg MC, is capable of providing a neutral connection at the output side of the MC. The neutral connection enables the four-leg MC to operate as a power supply providing a balanced, regulated, and fixed-frequency voltage for balanced and unbalanced loads, including the single-phase load. The generalized modulation strategy of the four-leg MC in this paper is developed in the context of power supply applications. Using the new formulation of the generalized modulation strategy, the direct duty-cycle modulation strategies based on DCSV calculation are developed for one-, three-, and four-leg MCs, which are referred to as the DCSV-based modulation strategy of the MC. Part I of the paper formulates the DCSV-based modulation strategy of the three- and four-leg MCs.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:60 ,  Issue: 3 )